
COURSE OUTLINE

(1) GENERAL

SCHOOL SOCIAL SCIENCES

ACADEMIC UNIT DEPARTMENT OF CULTURAL TECHNOLOGY AND
COMMUNICATION

LEVEL OF STUDIES UNDERGRADUATE

COURSE CODE PLR 111 SEMESTER 6

COURSE TITLE SOFTWARE ENGINEERING

INDEPENDENT TEACHING ACTIVITIES
if credits are awarded for separate components of the course, e.g.

lectures, laboratory exercises, etc. If the credits are awarded for the
whole of the course, give the weekly teaching hours and the total credits

WEEKLY
TEACHING

HOURS
CREDITS

lectures 2 3

Laboratory exercises 2 2

Add rows if necessary. The organisation of teaching and the teaching
methods used are described in detail at (d).

4 5

COURSE TYPE

general background,
special background, specialised general

knowledge, skills development

Elective / Special background

PREREQUISITE COURSES:

None. Recommended prerequisite knowledge related to
software programming, as provided in the following courses:
• INTRODUCTION TO PROGRAMMING (1st semester)
• OBJECT - ORIENTED PROGRAMMING I and II (3rd and 4th
semester)

LANGUAGE OF INSTRUCTION and
EXAMINATIONS:

Greek

IS THE COURSE OFFERED TO
ERASMUS STUDENTS

Yes

COURSE WEBSITE (URL) https://eclass.aegean.gr/courses/131200/

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire
with the successful completion of the course are described.

Consult Appendix A
• Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the

European Higher Education Area

• Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B

• Guidelines for writing Learning Outcomes

The course aims to provide students with the fundamental knowledge and skills
required for the development of reliable software. Upon completion of this course,
participants will be able to:

• understand the concept of software systems life-cycle
• describe the basic software development models

• understand the software analysis and design phases, as well as the processes
involved, according to the structured and object-oriented methodologies

• use the Unified Modelling Language models
• implement software (coding, debugging, documentation) using modern

development tools

• work productively in scalable and flexible software development teams

General Competences
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma
Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information,
with the use of the necessary technology
Adapting to new situations
Decision-making

Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas

Project planning and management
Respect for difference and multiculturalism
Respect for the natural environment
Showing social, professional and ethical responsibility and

sensitivity to gender issues
Criticism and self-criticism
Production of free, creative and inductive thinking
……
Others…
…….

Search for, analysis and synthesis of data and information, with the use of the
necessary technology
Team work
Project planning and management

(3) SYLLABUS

The course introduces students to the theoretical approaches, the
methodologies and tools necessary for the development of software systems. It
includes the following sections: software development models, software
requirements, system design, techniques and tools for the software
development, software quality, project management.

Lectures

1. Introduction – Course Goals and Objectives – Description of lectures

2. Introduction to Software Engineering

3. Software Life Cycle –Software Project Management

4. Software Development Methodologies

5. Object – Oriented Methodology – The Unified Modelling Language (UML)

6. Requirements Engineering

7. Use Cases

8. System Analysis Model

9. System Design – Architectural Design

10. User Interface Design

11. Implementation and Testing

12. An Introduction to Agile Programming

13. Revision – Presentation of Students Assignments

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY
Face-to-face, Distance learning, etc.

Face-to-face

USE OF INFORMATION AND
COMMUNICATIONS TECHNOLOGY

Use of ICT in teaching, laboratory education,
communication with students

Use of open source software in laboratory education

TEACHING METHODS
The manner and methods of teaching are
described in detail.
Lectures, seminars, laboratory practice,
fieldwork, study and analysis of bibliography,

tutorials, placements, clinical practice, art
workshop, interactive teaching, educational
visits, project, essay writing, artistic creativity,
etc.

The student's study hours for each learning
activity are given as well as the hours of non-
directed study according to the principles of the
ECTS

Activity Semester workload

Lectures 13 *2 hours =26 hours
Study of lectures material 13*5 hours = 65 hours

Laboratory practice 13*2 hours = 26 hours

Project 30 hours

Course total 147 hours

STUDENT PERFORMANCE
EVALUATION

Description of the evaluation procedure

Language of evaluation, methods of evaluation,
summative or conclusive, multiple choice
questionnaires, short-answer questions, open-
ended questions, problem solving, written work,

essay/report, oral examination, public
presentation, laboratory work, clinical
examination of patient, art interpretation, other

Specifically-defined evaluation criteria are given,
and if and where they are accessible to students.

Students are evaluated using a combination of assessment
methods, including:

Intermediate Assessment involving multiple choice and
short-answer questions 10%

Final Exam involving problem solving and short-answer

questions 60%

Team Project 30%

The evaluation criteria are given during the first lecture and
are explicitly stated in the course eclass.

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

• Pressman R.S. και Maxim R. Bruce, Software Engineering: A Practitioner’s Approach, 9th

Edition, McGraw Hill, 2020

• Ian Sommerville, Software Engineering, 10th Edition, Pearson, 2018

• Giakoumakis M. And Diamantides N., Software Engineering, Unibooks IKE, 2017

• Dennis, A., Wixom B.H., Tegarden, D., Systems Analysis and Design with UML 2.0,

Kleidarithmos, 2010

- Related academic journals:

• ACM Transactions on Software Engineering and Methodology, ACM

• IEEE Transactions on Software Engineering, IEEE Society

• Journal of Software Engineering Research and Development, Springer

• Software & Systems Modeling, Springer

• Journal of Systems and Software, Elsevier

