COURSE OUTLINE

(1) GENERAL

SCHOOL	Social Sciences				
ACADEMIC UNIT	Cultural Technology and Communication				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	MATH 601	SEMESTER 6			
COURSE TITLE	ADVANCED ARTIFICIAL INTELLIGENCE				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS		CREDITS	
	Lectures 2 3		3		
Laboratories		2		2	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).		4		5	
COURSE TYPE general background, special background, specialised general knowledge, skills development	Core Course/Ge	neral Backgr	ound		
PREREQUISITE COURSES:	None				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBSITE (URL)	https://eclass.aegean.gr/courses/131363/				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The students will be in the position to:

- Understand the basic principles of machine learning
- Get familiar with the supervised and unsupervised learning
- Implement basic techniques for artificial neural network training
- Understand the basic structure of fuzzy systems
- Understand and implement fuzzy system training algorithms
- Comprehend and implement evolutionary computation algorithms

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information,	Project planning and management
with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues

Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Criticism and self-criticism Production of free, creative and inductive thinking Others
 Search for, analysis and synthesis of 	data and information, with the use of the necessary
technology	
 Adapting to new situations 	
 Decision-making 	
 Working independently 	
• Team work	
 Project planning and management 	
 Production of free, creative and indu 	uctive thinking
 Working in an interdisciplinary envir 	onment

(3) SYLLABUS

Basic concepts of machine learning. Supervised machine learning, unsupervised machine learning. Basic structure kai function of the artificial neuron. Basic structures and training of feedforward neural networks. The back-propagation training algorithm. Basic structure and training if fuzzy systems. Evolutionary computation algorithms such as swarm intelligence algorithms.

The course is structured as follows:

1. Introduction

- 2. Structure single artificial neuron and neural network
- 3. Training rules of a neural network: what are they.
- 4. Delta rule
- 5. Feedforward neural networks
- 6. Gradient Descent algorithm
- 7. Back-propagation algorithm
- 8. Fuzzy logic and fuzzy sets
- 9. Fuzzy systems and their training
- 10. Evolutionary algorithms: basic structure
- 11. Swarm Intelligence algorithms
- 12. Cybernetics
- 13. Summary

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face	
Face-to-face, Distance learning, etc.		
USE OF INFORMATION AND	Use of Python	
COMMUNICATIONS TECHNOLOGY		
Use of ICT in teaching, laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are	Lectures	13 *2 hours =26 hours
described in detail. Lectures seminars laboratory practice	Lectures' study	13*5 hours = 65 hours
fieldwork, study and analysis of bibliography,	Laboratory Practice	13*2 = 26 hours
tutorials, placements, clinical practice, art	Laboratory Preparation and	33 hours
workshop, interactive teaching, educational	semester assignment	
etc		
	Total	150 hours
The student's study hours for each learning		
activity are given as well as the hours of non-		
directed study according to the principles of the		
ECTS		

STUDENT PERFORMANCE	The final examination is the main tool to evaluate student's
EVALUATION	performance. In this exam the student gets involved in
Description of the evaluation procedure	solving complex programming problems.
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	During semester, each student is also invited to carry out optional homework tests. If the student accepts the invitation, these tests will be positively considered in student's final evaluation. The evaluation criteria are clearly announced during the first lecture and in the e-class web site.
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	

(5) ATTACHED BIBLIOGRAPHY

 Λ. Ηλιάδης, Α. Παπαλεωνίδας, Υπολογιστική Νοημοσύνη & Ευφυείς Πράκτορες, Εκδόσεις Τζιόλας, Αθήνα, 2017.
 JohnHaugeland, "Τεχνητή Νοημοσύνη", Εκδόσεις Κάτοπτρο, 1992.